Pemfaktoran atau faktorisasi bentuk aljabar adalah menyatakan bentuk penjumlahan menjadi suatu bentuk perkalian dari bentuk aljabar tersebut. Sekarang, kalian akan mempelajari faktorisasi dari beberapa bentuk aljabar. Perhatikan uraian berikut:
1. Bentuk ax + ay + az + ... dan ax + bx – cx
Bentuk aljabar yang terdiri atas dua suku atau lebih dan memiliki faktor sekutu dapat difaktorkan dengan menggunakan sifat distributif.
ax + ay + az + ... = a(x + y + z + ...)
ax + bx – cx = x(a + b – c)
2. Bentuk Selisih Dua Kuadrat x2 – y2
Bentuk aljabar yang terdiri atas dua suku dan merupakan selisih dua kuadrat.
Dengan demikian, bentuk selisih dua kuadrat x2 – y2 dapat dinyatakan sebagai berikut:
x2 - y2= (x + y).(x - y)
3. Bentuk x2 + 2xy + y2 dan x2 – 2xy + y2
Untuk memfaktorkan bentuk aljabar x2 + 2xy + y2 dan x2 – 2xy + y2 perhatikan uraian berikut:
x2 + 2xy + y2 = (x + y) (x + y) = (x + y)2
x2 – 2xy + y2 = (x – y) (x – y) = (x – y)2
4. Bentuk ax2 + bx + c dengan a = 1
Langkah-langkah memfaktorkan bentuk aljabar x2 + bx + c dengan c positif sebagai berikut:
– Pecah c menjadi perkalian faktor-faktornya.
– Tentukan pasangan bilangan yang berjumlah b.
Contoh:
(x + 2) (x + 3) = x2 + 3x + 2x + 6 = x2 + 5x + 6 ........... (dihasilkan suku tiga)
Sebaliknya, bentuk suku tiga x2 + 5x + 6 apabila difaktorkan menjadi x2 + 5x + 6 = (x + 2) (x + 3). Perhatikan bahwa bentuk aljabar x2 + 5x + 6 memenuhi bentuk x2 + bx + c.
Berdasarkan pengerjaan di atas, ternyata untuk memfaktorkan bentuk x2 + bx + c dilakukan dengan cara mencari dua bilangan real yang hasil kalinya sama dengan c dan jumlahnya sama dengan b. Misalkan x2 + bx + c sama dengan (x + m) (x + n).
x2 + bx + c = (x + m) (x + n) = x2 + mx + nx + mn = x2 + (m + n)x + mn
Tidak ada komentar:
Posting Komentar